Stateful access control in Linux using the LSM

Thomas Howard Uphill

December 14, 2007

Abstract

Modern computing environments are subjected to a
greater number of security problems than the operat-
ing systems were originally designed to withstand[7].
Only a small number of programs should be able to
manipulate sensitive information[5]. Current operat-
ing system security policies are inadequate to address
this problem. Maintaining the state of a system can
be used to maintain order[8]. We propose that main-
taining state can be used to not only reduce the com-
plexity of a security policy but also achieve results not
possible without maintaining state.

To implement our model we use the LSM
framework in the Linux kernel. LSM is a ma-
ture security framework with several real world
implementations[2]. We implement a simple system
we call lsmlgi which maintains counters for the op-
erations of read, write, execute and delete. We also
create unique identities for processes and attach these
ids to files created by a process.

We are able to test a visitor law which prevents a
user of an account from deleting or modifying files
created by another session of his/her account. We
implement an Apache law which prevents an account
from executing files that it has created (to be used
on a webserver to prevent the webserver from run-
ning files it has created). In our budget law example
we prevent a process running as a certain user from
executing more than a set number of subprocesses.

Maintaining state in Linux is possible. In fu-
ture work we would implement several of the LGI
paradigms such as doAdd() which allows an arbi-
trary element to be added to the state of an agent
(process)[8]. Our law system is very rigid, one of the
strengths of a system like LGI is that laws can do al-

most anything and are not restricted to a simple yes
or no answer when performing an operation. Of the
LSM implementations studied, SELinux appears to
be the most mature, future work should attempt to
augment SELinux with dynamic state information.

1 Introduction

When UNIX was first developed in 1969, access con-
trol was not a great concern. The systems of the
day were simple and there were very few users. In-
trusion and attack were not yet a problem. Security
in general was not a concern. However, due to in-
creases in connectivity and data sharing, the assump-
tion that existing security mechanisms are adequate
is fading[9].

The simple access control provided by UNIX is
a discretionary access control mechanism based on
three 3-bit access vectors. Permissions to do any-
thing on the system are broken into three groups.
For each file there is an “owner”, a “group” and the
catchall bucket of “other”. The “owner” is the owner
of the file. The “group” is the group owner of the
file, a group is a collection of users. Any user in the
specified group is granted the permissions specified
in the 3-bit group vector. “Other” is any user on
the system, id est anyone. Other includes the owner
and the group and therefore precludes preventing ac-
cess for the owner or group while allowing access for
“other”. Each of these three octets can have the per-
mission to read, write or execute the file (as well as
some special permissions not addressed here). This
system was adequate in 1969 and was adopted by Li-
nus Torvalds when he wrote Linux in 1991. Not much
has changed in 20 years.

These permissions make it difficult to properly se-
cure a system as there is not enough resolution to
finely tune the access control on the system. For
example, certain files on the system need to be ac-
cessible by more than one user or group but should
not be accessible by everyone on the system (other).

To address the issue of fine grain access control,
POSIX Access Control Lists (POSIX ACLs!) were
created. An ACL is a list of permissions assigned to
an object. Each permission in an ACL is known as
an access control element (ACE). ACLs may contain
multiple entries for multiple groups, in this way files
may belong to more than one group. ACLs may also
contain negative permissions. For example a file may
belong to group X and be readable and writable by
group X. An ACE can be applied to the file that
says user Y cannot read or write the file. Even if Y
belongs to group X, she cannot access the file. To
support ACLs, Linux stores the ACL in an extended
attribute on the filesystem (we mention this here as
we make use of this as discussed in section 2.1).

POSIX ACLs increase the resolution of permis-
sions but are still a form of discretionary access con-
trol (DAC). A more secure system of access control
is mandatory access control (MAC). With a discre-
tionary policy, the user is involved in the definition
of the policy and assignment. Carelessness by any
one user can result in a violation of the systems se-
curity policy[9]. Mandatory policy removes the user
from the equation and states that all access is denied
by default. The policy must allow operations to take
place or else they are denied. However, even with a
very restrictive mandatory policy, an application may
misbehave within its sandbox[9].

A better system of assigning permissions is needed,
a system of least privilege and separation of duty.
One solution is to assign permissions to roles and
then assign users to roles, this is the approach taken
in [4].

The problem all these systems suffer is that to
achieve useful results, the policy must become enor-
mous. As well, system administrators “must resort to
complex policy modifications to resolve conflicts”[6].

1The name POSIX is used by the POSIX security drafts,
.le and .2c, were never ratified.

A well designed security framework should be flexible,
economic and have a simple policy[9]. No model can
meet all the security needs of modern operating sys-
tem. A successful policy must be flexible; there must
be a clean separation of policy from enforcement[10].
We believe that maintaining state will reduce the
complexity of the policy and still achieve the same
level of security. Our increasing use of web proto-
cols and network communication means that access
control needs to be stateful in order to ensure proper
conversations are taking place between agents[7]. It
has been suggested that conversations can be mod-
eled with a finite state transition system[7].

The next few sections introduce the key kernel
concepts and background required to implement our
model.

1.1 Linux Kernel and Files

The Linux kernel views everything as a file (key-
boards, disks, printers, screens, etc). For example
when a process wishes to update the screen with some
information, it simply writes the information to the
screen file and the kernel updates the screen accord-
ingly.

Real files, things that live on a disk or other media
are represented as inodes or information nodes in the
filesystem.2 An inode is a data structure that con-
tains information about files, such as owner, group,
type of file (directory, plain file or special file) or per-
missions and pointers to blocks of data.

Directories are files, which means they are actually
inodes, the permission to write a file to a directory
is granted by first checking that permission is given
to update the directory inode. A directory is just a
mapping between filenames and inodes®.

In UNIX*, files may be listed in several directories,
the filename of a file is just a string in a directory. The
multiple filenames are known as hard links to the in-
ode (this is not to be confused with symbolic linking).

2 Although some things are are not real files also have inodes
associated with them.

3This is why a move command on linux is so fast, move
is just deleting an entry in one directory and inserting it in
another; rename is equally quick.

4 Actually in the ufs and ext2/ext3 filesystems

The Linux kernel does not maintain file information
for the purposes of permissions, it only deals with in-
odes, since inodes are the ultimate target of filenames
(and this removes any ambiguity). Our implementa-
tion only addresses inodes for this same issue.

1.2 Programs and threads

When a program is executed on Linux it becomes a
process. Running processes may start subprocesses
or enable several threads. Since threads share the
same process information, concurrency is an issue
when attempting to maintain the state of the task.
We use semaphores to protect updates of the state.
Processes are spawned by other processes, each pro-
cess has a unique parent and may have several chil-
dren.

One of the first things the kernel does when booting
is to start a process called init, since it is the first true
process on the system, it is assigned the process id
(pid) of 1. All subsequent processes are children of
init.

1.3 LSM

In order for Linux to remain secure in the changing
environment, a stronger mechanism had to be built to
prevent Linux from becoming a “fortress built upon
sand.”[9]. To address growing concerns over security,
the Linux Security Modules (LSM) framework was
created. LSM has been part of the Linux kernel since
version 2.6. In 2001, the NSA presented its work on
SELinux to Linus Torvalds[1] and expressed an inter-
est in having SELinux incorporated into the main-
stream kernel. Linus acknowledged that some sort
of enhanced security was needed, but didn’t want to
choose the implementation. Linus opted to create a
framework for Linux security modules (LSM).

A kernel module is a self contained piece of the
kernel that can be dynamically inserted and removed
from the running kernel®. Kernel modules have previ-
ously been used without the LSM for policy enforce-
ment.

5The module framework also allows for modules to be com-
piled statically into the kernel. Modules that are statically
compiled still behave as though they were dynamically loaded.

[user space j

[kernel]
[CPU] (memory) (hardware

Figure 1: Separation of user space and kernel space

In Linux the kernel runs in a memory space that
is separate from user programs. The kernel has ac-
cess to the hardware and memory of the system and
user processes must access hardware via the kernel
as shown in figure 1. User processes access hardware
and memory via system calls.

Most modules resort to system call interposition to
overpower the system call[11]. To exemplify system
call interposition, assume a module wishes to affect
the outcome of open calls. The module z will inform
the kernel that open calls are now handled by z. The
module must then perform the checks it wishes to do
on incoming data and pass the results to the origi-
nal system call of open, or perform the work of the
open system call itself. System call interposition is a
potentially dangerous mechanism because it requires
that the security module directly interfere with the
system calls. The module needs to know if the API
for the system call has changed in any way. Also the
interposition function must return appropriate return
values to the calling program or risk crashing the pro-
gram (or worse, crashing the kernel).

LSM uses a series of hooks in the kernel that allow
a security module to either allow or reject an opera-
tion. In this way the LSM API can remain relatively
unchanged while the system calls upon which it de-
pends remain fluid. LSM asks the security module
the question “May a subject S perform a kernel op-
eration OP on an internal kernel object OBJ?”[11].

LSM is layered on top of the existing DAC system
in Linux. The discretionary access control checks are
made before the LSM is consulted, if the DAC checks
are negative (indicating permission denied) then LSM
is never consulted. This serves two purposes, it re-
duces the amount of time that LSM checks are made
(which improves performance) and it greatly reduces

application

look-up inode
I

DAC
1 T LSM Module

LSM hook

I

inode

Figure 2: LSM Implementation

struct inode {
struct hlist_node i_hash;
struct list_head i_list;

void *i_security;

+
Figure 3: inode struct

the amount of modification to the kernel required to
make the LSM hooks authoritative[11]. A diagram of
the implementation of LSM is shown in figure 2.

LSM adds a security field to key kernel structures.
As described in section 1.1, files on disk are inodes.
An inode loaded into memory is held internally by the
kernel in a struct inode structure as shown in figure
3. To support LSM, a security field has been added
to the inode struct which is a pointer to type void
(void *i_security). Using a void pointer allows the
pointer to point to anything or nothing depending on
what the security module decides.

Calls are made to LSM functions (hooks) when a
new inode is created or when any inode is accessed by

the kernel (read and write operations). As an exam-
ple, when a new inode is created, a call is made to the
Ism function inode_alloc_security, this creates an
inode_security_struct and attaches it to the inode
struct. An entry is placed in the kernels inode secu-
rity cache at this time as well. A call is then made to
inode_create which determines if permission should
be granted to create the inode. LSM is compartmen-
talized in this way so that the operation of creating a
security context is independent from the verification
of permission. Similarly when a request is made to
delete an inode, the permission to do so is determined
before calling the function which removes the inode
(inode_free_security).

A module identifies itself as an LSM module by
calling the function register_security, it can unreg-
ister with unregister_security. LSM also provides a
notion of stacking. A module may register itself with
a primary LSM module as a secondary module®.

LSM does not provide any locking for the security
fields, the module must perform any required locking
(for synchronization). Allocation and deallocation of
the security structures is also the responsibility of
the LSM module. Our module maintains an inode
cache, the module must create and destroy entries in
this cache as inodes are created, deleted or accessed.
To persistently bind security attributes to files, a set
of extended attributes are set on the inodes in the
filesystem, a complex task[11].

1.4 SELinux

SELinux was developed by the National Security
Agency (NSA) and released to the public on Decem-
ber 22, 2000[1]. SELinux is a mandatory access con-
trol (MAC) system for Linux. SELinux provides sup-
port for several types of MAC policies including role-
based access control (RBAC) and multi-level secu-
rity (MLS). An SELinux policy is composed of allow
statements” of the form:

allow type target_type : file { permission };

6We attempted to stack with our SELinux implementation
and were unsuccessful.

Tallow statements are only one of several statements pos-
sible in SELinux policy, they are however, the only type of
concern in our context.

This is an example of an allow statement, with
MAC systems anything not allowed is denied by
default. This line would allow a process running
with type type to do permission on a file with
type target_type. Each file on the system has an
selinux security context assigned to it. The secu-
rity context of the file /etc/passwd on our system
is system_u:object_r:etc_t. The security context
is a concatenation of the form user:role:type. An
SELinux user is similar to a UNIX user. Role is a con-
cept based on role-based access control, it connects
a series of users with a collection of programs that
they should be allowed to execute[5]. This means for
an application to read the /etc/passwd file, its type
must have the right to read a file of type etc_t. There
are potentially hundreds if not thousands of different
types on the system and each type must have rules
to access the files it needs to access. This results in
several thousand rules in the policy. On our RedHat
Enterprise Linux 5% system the default “targeted”
SELinux policy has 82460 allow lines. Clearly this
is a very complex policy that is difficult to debug
and difficult to audit. Our system will attempt to
use state to achieve similar goals with more compact
policies.

The rest of the paper is organized as follows: in
section 2 we introduce our model and its implemen-
tation. In section 3 we present examples of Laws and
the results achieved on our system. We present fur-
ther work in section 4 and conclude in section 5.

2 LSMLGI

Our LSM module, Ismlgi, uses the LSM framework
to maintain the state of a running process on the sys-
tem. We maintain the state by incrementing counters
of the major file operations being performed by the
process. When a process is born we assign unique
identifiers to the process. Currently we track read,
write, create, delete and execute operations. When a
process writes a file, we increment the write counter
(likewise for read, delete and execute operations).
We update the parent of the process as well so that
subprocesses cannot run unrestricted with respect to
their parents.

Law Governed Interaction (LGI) is a system of ac-
cess control that regulates the interaction of agents in
a distributed system via laws[8]. The processes run-
ning on a system can be thought of as autonomous
agents running in a closed system. We attempt to
regulate the interactions between these agents (pro-
cesses) using a simple law system. The main tenant
of LGI is that the state of the agents may be updated
by any interaction (message), and that the law is not
restricted in the actions it may take. The law is not
restricted to a simple yes or no answer and may do
anything it pleases. With LSM we can only say no
to an operation, but we can update the state via our
security struct in any way we please. Our initial im-
plementation is restricted in action to a simple yes
or no answer and is therefore not as powerful as a
system like LGI. We suggest in section 4 that further
work should allow our module to take more actions.

2.1 Implementation

A note on running in the kernel: kernel programs
do not have direct access to user level data. There
is a separation of user space and kernel space. The
kernel only knows about uids and gids. To translate
usernames into uids on behalf of the kernel, we use a
user space helper application (lawloader). Our sys-
tem requires that a law be loaded dynamically; we
load the law by using a user space program to send
the law in compiled form to the kernel module using
the proc filesystem. The proc filesystem (procfs) is a
window to kernel space. It stores information about
running processes and modules. We create a procfs
“file” called /proc/1lsmlgi. We load a law into lsmlgi
by writing to /proc/lsmlgi. When a new law is re-
ceived on /proc/lsmlgi, the law is compiled and then
replaces the current law on the system as depicted in
figure 4

When a new law is loaded, we populate a list of
uids that the module will consider. Any uid’s that
are not listed will bypass the module. This allows us
to ignore the root account and test scenarios while
developing the system. Eventually all accounts will
be monitored, but for now we only consider specific
accounts.

At each critical lsm hook function we perform the

sid: 1197282269

law:

law initialized: 5 rules
48:-1:6:2:14:2
500:-1:6:6:12:-20
500:-1:7:2:15:2
48:-1:6:2:13:2
500:-1:7:2:15:2

Figure 4: Contents of /proc/lsmlgi

necessary memory check requirements then call the
function lsmlgi_check law, 1smlgi_check law has
access to the currently running tasks’ security struc-
ture and makes the decision to allow or deny the ac-
cess based on the current state. If the access is per-
mitted we then call lsmlgi_update_parent to update
the state on the current process and recursively to
update the state of the parent®. It is worth noting
that we do not update the state of process id 1. The
process with id 1 is init, init is the master process
on the system, it is the first process started on the
system. All processes are descendants of init”. The
process of loading our module, initializing a law and
then acting upon the law is shown in figure 5.

We defined the following three security structs,
bprm_security_struct, task_security_struct and
inode_security_struct. We added the fields of sid,
tsid and fsid to these structs. We initially use the
time in seconds on the system as a unique identifier.
To the task_security_struct we added the addi-
tional counters of read, write, delete and execute.

We use sid (security id) to contain the id of the
running lsmlgi implementation, that is, it is a unique
key that identifies the running system, when the sys-
tem is rebooted, a new sid will be created. The task
sid is tsid and fsid is the file sid.

When a task is created, we create the security
struct for the task using task_alloc_security and cre-

8and the grandparents, and the great grandparents, and the
great great grandparents, and ... We recurse until we reach pid
=1 (init)

9We do not update the state on init due to time constraints,
init is an important system process, preventing init from op-
erating properly would significantly increase debugging time.

init_module

|

register_security /proc/lsmlgi «+—— lawloader

1 J |

create_proc_entry [AW 3
!

!

check_law !

inode_alloc_security

|

task_alloc_security

inode

task

Figure 5: Implementation of our module

security.lsmlgi=¢‘1197221584:1197221793:1197221939:\000°’

Figure 6: Security Context

ate a new tsid for the task. When a task spawns a
subprocess, it receives the task sid of its parent. To
differentiate between parents and children, the fsid is
created uniquely for each task and is independent of
lineage. An example context is shown in figure 6.
The read, write, execute and delete counters of the
task structure are updated when each of the respec-
tive operations is performed by a task or its children.
For example if a child task deletes a file, the child’s
task structure is updated and the child’s parent task
structure is also updated. In this way we are able
to accurately track a process that spawns helper pro-
cesses'®. The current state of the process is exposed
to the user in the proc filesystem. For a process with
pid 42, the file /proc/42/attr/current contains the
current state of the process as shown in figure 7

105uch as a shell

user process

$1d=1197282269
tsi1d=1197282275
fsid=0

read=28

write=0

del=0

exec=1

Figure 7: Process State information

When a task creates a file, the inode security struc-
ture is initialized. We also create an entry in the ker-
nel inode cache table to identify the inode’s security
to the kernel. This is required if we wish to set a
security struct on the inode, in the interest of effi-
ciency when dealing with inodes, the kernel requires
that these structures be placed in a cache. We then
set the sid of the inode_security_struct to the sid
of the running system. Next we set the tsid to the
tsid of the task creating the file and finally we set the
fsid to a new unique sid. We call the combination
of sid:tsid:fsid is our security context, it is writ-
ten to the filesystem in the extended attributes of the
file. The security context is written to the extended
attributes to ensure that the security context is per-
sistent across reboots or if the inode is cleared from
memory and/or it needs to be reloaded. The security
context of the inode may be updated or overwritten
while the inode is in memory, we are currently not up-
dating the context, but this could be used in future
work to maintain the tsid of the last task to update
the inode.

3 Law Examples

In this section we present examples of simple laws
that could be used on a real system to affect a re-
sult that is not possible without maintaining state
on the system. Our law language is very simple, it
consists of a user or group designation followed by a
user or group name. We then specify the operation
we are interested in controlling (read, write, delete or
execute). Next we specify the rule, that is the com-

group apache exec { tsid == tsid }
user thomas exec { exec > 20 }
user thomas del { tsid != tsid }

Figure 8: Example Law

user visitor del { tsid != tsid }
user visitor write { tsid !'= tsid }

Figure 9: Visitor law

bination of current task state versus inode state or
current task state versus current task state that we
wish to block. The rule can be any one of the iden-
tifiers (sid, tsid, fsid) or any of the counters (read,
write, delete, execute) or a constant. An example
law is shown in figure 8.

3.1 Visitor Account

At our institution there are numerous visitors each
day that require some sort of short term account.
Most users are using the system to access their home
institution accounts. We provide a visitor account
for the users to share, but to allow the users to work
properly, we cannot restrict their ability to write files
in the home directory. Since the account is shared,
any user of the account can delete or modify the files
of any other user of the account. We implement a vis-
itor law that restricts the delete and write functions
of a task to only those files that the task created as
shown in figure 9 From the visitors point of view, they
can only modify or delete the files that they created
in this session. Any files that they leave on the sys-
tem after logging out will be write and delete locked
the next time they log into the system.

3.2 Web Server

A web server may create files while running to track
remote users or to log traffic. We consider that the
web server should only be able to execute files that
were created before it started running, that is, it can-

user apache exec { tsid == tsid }

Figure 10: Web Server law

user thomas exec { exec > 20 }

Figure 11: Budget Law

not run any scripts or programs placed on the system
after it was started. These files could potentially be
maliciously created through some unknown exploit of
the web server. We implement this law as shown in
figure 10. This law states that files created by this
task (process) cannot be executed by this task. This
prevents the web server from writing a file and then
immediately executing it.

3.3 Budget

In this example we track the number of subprocesses
launched by a user or group. This example was in-
spired by the database query budget suggested in [3].
When the number reaches a critical number, we deny
the user or group from starting any further tasks (the
user can, however, simply logout and login again to
renew her budget) In future the state could be main-
tained for a user, independent of process information.
This would require another structure in the module
but would be straight-forward to implement. We did
not implement such a system due to time constraints.
Our budget example law is shown in figure 11.

4 Further Work

Our module is a very simple implementation of a
stateful system. Future work should expand the law
language to allow variables to be set dynamically in
the security structure. Many applications have well
defined “conversations”[7] that could be used in a
stateful system to deny any non-conversational ac-
tions.

SELinux has support for controlling network oper-

ations. Controlling network operations in a stateful
manner is very useful, but currently this is handled
by another package (iptables). Implementing stateful
network control in the same package as access con-
trol has the potential to streamline the security policy
and make policy validation a simpler task.

SELinux is a mature implementation of the LSM,
several user space programs exist to validate policy
and to digest error logs for system administrators[5].
Future work should include a mechanism to inform
the user at a decision point why an action was
blocked. In SELinux this is taken care of by the seal-
ert (SE-Alert) applet which displays human readable
interpretations of why access was denied. SELinux is
a mature security policy enforcement system, there
would be great benefit to making the state transition
system of SELinux dynamic. That is, to allow pro-
cesses to transition dynamically depending on their
current state.

More examples of why state is useful to maintain
will need to be developed if a real world system is
to be created. Adding support for network opera-
tions should increase acceptance. Perhaps the most
promising method of implementation may be to aug-
ment the existing SELinux system with some state
saving capabilities.

5 Conclusion

The need for enhanced security policy and access con-
trol in modern operating systems is apparent. The
LSM framework for Linux is a free and open API.
Writing LSM modules has become an accessible way
for researchers to work on access control projects.
This implementation was completed in a little over
8 weeks by a non-kernel programmer.

Maintaining state allows our module to achieve in-
teresting results with minimal policy. Simple policies
are trivial to validate. Most security policy imple-
mentations rely on enormous and complex policies to
affect similar results. Perhaps the greatest benefit of
maintaining state is simplicity.

Stateful access control can achieve very different
results than non-stateful access control. Our budget
example is simply not possible without maintaining

state. The visitor account example may be possible
without maintaining state but would require a very
complicated non-stateful policy.

6 Acknowledgments

We would like to thank the NSA for releasing the
source code for SELinux to the public. Much of our
work was achieved by reading the SELinux imple-
mentation and adapting it to our model. We would
also like to thank Chris Wright and Stephen Smalley
for their work on LSM, making the framework avail-
able and providing documentation made this project
possible for someone unfamiliar with kernel coding.

We would also like to thank Josko Plazoni¢ for
assistance with coding and debugging the module.
Vinod Ganapathy for his suggestion of [5]. And
finally Naftaly Minsky for the inspiration for the
project with his work on LGI.

7

Resources

Source code for this module is available online at:

http://ramblings.narrabilis.com/wp/linux/stateful-access-control-using-1sm/

Slides from a talk about this project are available at:

http://ramblings.narrabilis.com/lsmlgi/lsmlgi-presentation.pdf

References

[1]

2]
3]

National Security Agency. National security agency shares security enhancements to linux.
http://www.nsa.gov /releases/relea00027.cfm.

National Security Agency. Selinux. http://www.nsa.gov.

Xuhui Ao and Naftaly H. Minsky. On the role of roles: from role-based to role-sensitive access control.
In SACMAT ’04: Proceedings of the ninth ACM symposium on Access control models and technologies,
pages 51-60, New York, NY, USA, 2004. ACM.

David F. Ferraiolo. An argument for the role-based access control model. In SACMAT °01: Proceedings
of the sixth ACM symposium on Access control models and technologies, pages 142143, New York, NY,
USA, 2001. ACM.

Joshua D. Guttman, Amy L. Herzog, John D. Ramsdell, and Clement W. Skorupka. Verifying informa-
tion flow goals in security-enhanced linux. In WITS ’03: Workshop on Issues in the Theory of Security,
2003.

Trent Jaeger, Antony Edwards, and Xiaolan Zhang. Managing access control policies using access
control spaces. In SACMAT ’02: Proceedings of the seventh ACM symposium on Access control models
and technologies, pages 3—-12, New York, NY, USA, 2002. ACM.

Massimo Mecella, Mourad Ouzzani, Federica Paci, and Elisa Bertino. Access control enforcement for
conversation-based web services. In WWW ’06: Proceedings of the 15th international conference on
World Wide Web, pages 257-266, New York, NY, USA, 2006. ACM.

Naftaly Minsky. Law Governed Interaction (LGI): A Distributed Coordination and Control Mechanism.
Department of Computer Science, Rutgers University, 0.9.2 edition, 2005.

Patrick A. Muckelbauer Ruth C. Taylor S. Jeff Turner John F. Farrell Peter A. Loscocco, Stephen
D. Smalley. The inevitability of failure: The flawed assumption of security in modern computing
environments. Technical report, National Security Agency, 1998.

Stephen Smalley. Which operating system access control technique will provide the greatest overall
benefit to users? In SACMAT ’01: Proceedings of the sixzth ACM symposium on Access control models
and technologies, pages 147-148, New York, NY, USA, 2001. ACM.

C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. 11th UseNIX Security Symposium, San Francisco, CA, 2002.
UseNIX.

10

