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Why?

* Maintaining state allows for decisions to be
made based on runtime conditions.

* State based policy can be more concise

* State based policy can achieve different
results than stateless.
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Background

UNIX
Files

Permissions
LSM
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UNIX

* everything is a file

(keyboards, screens, printers, hardware, kernel internal structures)
* kernel is the master process

process id (pid) =

* pid is unique
processes have children and parents

* initis pid 1
* /proc filesystem

contalns process information

(some kernel processes appear in as low process numbers,
e.g. [migration/0])
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UNIX

* kernel space vs user space

applications

kernel
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Files

* Files are inodes + blocks
* inodes are information nodes
* blocks contain data on disk

block block
owner
group
permissions
extended attributes
) |
—
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Permissions

* Classis UNIX permissions:
user group other
read write execute

 POSIX Access Control Lists (ACLs):
list of access control entries (ACES)
requires special storage in inodes
- extended attributes on filesystem
— access control structure in kernel
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LSM

* Linux security module framework

GNU General Public License

* Crispin Cowan 2001
* hooks

return O to allow
return non-zero to deny

* security fields

structs modified
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~ open
lookup inode

LSM hook
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Implementation

* subset of Ism hooks used

inode, bprm and task

* inode security cache

kmem_cache_alloc/kmem_cache_create/kmem_cache_free

* sid /* unique identifier for runtime */

* tsid /* unique identifier for task */
* fsid /* unique identifier for file */
* counters

read/write/del/exec
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Law Language

user username operation { action/sid comp action/sid}
group groupname operation { action/sid comp action/sid}

Examples:

user thomas exec { exec > 20 }
user apache exec { tsid != tsid }
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init_module

l

proc/lsmlgt Tawloader

register_security :
I.. .
|
create procfile LAW n
|
|

cache_alloc check_Taw <:— user process
O_I | .

r------------- inode_alloc_security
| T

T ask_alloc_security

T :|
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Demonstration

visitor.law
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Demonstration

apache.law
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Demonstration

budget.law
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Sources/References

Wikipedia on LSM
http://en.wikipedia.org/wiki/Linux_Security Modules

LSM Source Code:
http://Ism.bkbits.net

UseNIX Security’02 Abstract:
http://www.usenix.org/event/sec02/wright.ntml

NSA’s SELinux
http://www.nsa.gov/selinux/
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Questions/Comments?

http://ramblings.narrabilis.com/wp/linux/stateful-access-control-using-lsm/
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