Stateful access control using LSM

CS547
Thomas Upnill

11 December 2007 Stateful access control using LSM 1



Why?

* Maintaining state allows for decisions to be
made based on runtime conditions.

* State based policy can be more concise

* State based policy can achieve different
results than stateless.

11 December 2007 Stateful access control using LSM



11 December 2007

Background

UNIX
Files

Permissions
LSM

Stateful access control using LSM



UNIX

* everything is a file

(keyboards, screens, printers, hardware, kernel internal structures)
* kernel is the master process

process id (pid) =

* pid is unique
processes have children and parents

* initis pid 1
* /proc filesystem

contalns process information

(some kernel processes appear in as low process numbers,
e.g. [migration/0])

11 December 2007 Stateful access control using LSM



UNIX

* kernel space vs user space

applications

kernel

11 December 2007 Stateful access control using LSM



Files

* Files are inodes + blocks
* inodes are information nodes
* blocks contain data on disk

block block
owner
group
permissions
extended attributes
) |
—

11 December 2007 Stateful access control using LSM



Permissions

* Classis UNIX permissions:
user group other
read write execute

 POSIX Access Control Lists (ACLs):
list of access control entries (ACES)
requires special storage in inodes
- extended attributes on filesystem
— access control structure in kernel

11 December 2007 Stateful access control using LSM



LSM

* Linux security module framework

GNU General Public License

* Crispin Cowan 2001
* hooks

return O to allow
return non-zero to deny

* security fields

structs modified

11 December 2007 Stateful access control using LSM



~ open
lookup inode

LSM hook

11 December 2007 Stateful access control using LSM



D b 2007 Stateful access control using LSM 10
11 December



Implementation

* subset of Ism hooks used

inode, bprm and task

* inode security cache

kmem_cache_alloc/kmem_cache_create/kmem_cache_free

* sid /* unique identifier for runtime */

* tsid /* unique identifier for task */
* fsid /* unique identifier for file */
* counters

read/write/del/exec

11 December 2007 Stateful access control using LSM



Law Language

user username operation { action/sid comp action/sid}
group groupname operation { action/sid comp action/sid}

Examples:

user thomas exec { exec > 20 }
user apache exec { tsid != tsid }

11 December 2007 Stateful access control using LSM

12



init_module

l

proc/lsmlgt Tawloader

register_security :
I.. .
|
create procfile LAW n
|
|

cache_alloc check_Taw <:— user process
O_I | .

r------------- inode_alloc_security
| T

T ask_alloc_security

T :|

11 December 2007 Stateful access control using LSM

13



11 December 2007

Demonstration

visitor.law

Stateful access control using LSM

14



11 December 2007

Demonstration

apache.law

Stateful access control using LSM

15



11 December 2007

Demonstration

budget.law

Stateful access control using LSM

16



11 December 2007

Sources/References

Wikipedia on LSM
http://en.wikipedia.org/wiki/Linux_Security Modules

LSM Source Code:
http://Ism.bkbits.net

UseNIX Security’02 Abstract:
http://www.usenix.org/event/sec02/wright.ntml

NSA’s SELinux
http://www.nsa.gov/selinux/

Stateful access control using LSM

17



Questions/Comments?

http://ramblings.narrabilis.com/wp/linux/stateful-access-control-using-lsm/

11 December 2007 Stateful access control using LSM 18



